1,387 research outputs found

    A similarity law for stressing rapidly heated thin-walled cylinders

    Get PDF
    When a thin cylindrical shell of uniform thickness is very rapidly heated by hot high-pressure gas flowing inside the shell, the temperature of material decreases steeply from a high temperature at the inside surface to ambient temperatures at the outside surface. Young's modulus of material thus varies. The purpose of the present paper is to reduce the problem of stress analysis of such a cylinder to an equivalent problem in conventional cylindrical shell without temperature gradient in the wall. The equivalence concept is expressed as a series of relations between the quantities for the hot cylinder and the quantities for the cold cylinder. These relations give the similarity law whereby strains for the hot cylinder can be simply deduced from measured strains on the cold cylinder and thus greatly simplify the problem of experimental stress analysis

    Automatic navigation of a long range rocket vehicle

    Get PDF
    The flight of a rocket vehicle in the equatorial plane of a rotating earth is considered with possible disturbances in the atmosphere due to changes in density, in temperature, and in wind speed. These atmospheric disturbances together with possible deviations in weight and in moment of inertia of the vehicle tend to change the flight path away from the normal flight path. The paper gives the condition for the proper cut-off time for the rocket power, and the proper corrections in the elevator angle so that the vehicle will land at the chosen destination in spite of such disturbances. A scheme of tracking and automatic navigation involving a high-speed computer and elevator servo is suggested for this purpose

    Isotropic reconstruction of 3D fluorescence microscopy images using convolutional neural networks

    Full text link
    Fluorescence microscopy images usually show severe anisotropy in axial versus lateral resolution. This hampers downstream processing, i.e. the automatic extraction of quantitative biological data. While deconvolution methods and other techniques to address this problem exist, they are either time consuming to apply or limited in their ability to remove anisotropy. We propose a method to recover isotropic resolution from readily acquired anisotropic data. We achieve this using a convolutional neural network that is trained end-to-end from the same anisotropic body of data we later apply the network to. The network effectively learns to restore the full isotropic resolution by restoring the image under a trained, sample specific image prior. We apply our method to 33 synthetic and 33 real datasets and show that our results improve on results from deconvolution and state-of-the-art super-resolution techniques. Finally, we demonstrate that a standard 3D segmentation pipeline performs on the output of our network with comparable accuracy as on the full isotropic data

    An evaporation-based model of thermal neutron induced ternary fission of plutonium

    Get PDF
    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.Comment: 25 pages, 12 figures, accepted for publication in IJMP

    Some Secrets of Fluorescent Proteins: Distinct Bleaching in Various Mounting Fluids and Photoactivation of cyan fluorescent proteins at YFP-Excitation

    Get PDF
    Background
The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins.

Methodology/Principal Findings
When we applied a commonly used FRET microscopy technique - the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10 - 15% after illumination at the YFP-excitation wavelength – a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor.

Conclusions/Significance
Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions

    Changes in intracellular ion activities induced by adrenaline in human and rat skeletal muscle

    Get PDF
    To study the stimulating effect of adrenaline (ADR) on active Na+/K+ transport we used double-barrelled ion-sensitive micro-electrodes to measure the activities of extracellular K+ (aKe) and intracellular Na+ (aNai) in isolated preparations of rat soleus muscle, normal human intercostal muscle and one case of hyperkalemic periodic paralysis (h.p.p.). In these preparations bath-application of ADR (10−6 M) resulted in a membrane hyperpolarization and transient decreasesaKe andaNai which could be blocked by ouabain (3×10−4 M). In the h.p.p. muslce a continuous rise ofaNai induced by elevation ofaKe to 5.2 mM could be stopped by ADR. In addition, the intracellular K+ activity (aKi), the free intracellular Ca2+ concentration (pCai) and intracellular pH (pHi) were monitored in rat soleus muscle. During ADRaKi increased, pHi remained constant and intracellular Ca2+ apparently decreased. In conclusion, our data show that ADR primarily stimulates the Na+/K+ pump in mammalian skeletal muscle. This stimulating action is not impaired in the h.p.p. muscle

    Characterization of a Mixed Methanotrophic Culture Capable of Chloroethylene Degradation

    Full text link
    A consortium of methanotrophs cultured from the St. Joseph's aquifer in Schoolcraft, MI, was found to exhibit similar methane consumption rates as pure cultures of methanotrophs. The methanotrophic consortium resides within a portion of the aquifer contaminated with a mixed waste plume of perchloroethylene (PCE) and its reductive dechlorination products from natural attenuation, trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinyl chloride (VC). Oxidation kinetics for TCE, c-DCE, and VC were measured for the mixed methanotroph consortium and compared to reported rate parameters for degradation of these chloroethylene compounds by pure methanotrophic cultures. The results demonstrate that the kinetics of chloroethylene oxidation by the Schoolcraft methanotroph population mimic the degradation rates of pure methanotrophic cultures that primarily express particulate methane monooxygenase (pMMO). Molecular and biochemical analyses confirmed that sMMO was not being expressed by these cells. Rather, using competitive reverse transcriptionpolymerase chain reaction, pmoA, a gene encoding one of the polypeptides of the pMMO was found at a level of (1.57 ± 0.10) × 10–17 mol pmoA mRNA/g wet soil in soil slurries and (2.65 ± 0.43) × 10–17 mol pmoA mRNA/μl in groundwater. No expression of mmoX, a gene encoding one of the polypeptides of the sMMO, was detected.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63398/1/ees.2005.22.177.pd
    • …
    corecore